0 comments on “Unexplainable Astronomy? Part 1: The Wow! Signal”

Unexplainable Astronomy? Part 1: The Wow! Signal

By Sam Jarman

The scribble that started it all | Image: Big Ear Radio Observatory, NAAPO

Monday was dragging for Jerry R. Ehman, in a way that only a volunteer astronomer at the SETI project could truly understand. The frequency data printed out by the IBM 1130 computer was, as always, infuriatingly ordinary. The stream of paper he needed to analyse by hand was seemingly endless. Coffee in a Styrofoam cup was slowly growing lukewarm. Then… something different.

 

On August 15 1977, Ohio State University’s Big Ear radio telescope picked up an intense and unexpected burst of radio waves, which lasted for a full 72 seconds. Stunned by the break in the monotony of his task, Ehman couldn’t help but briefly forget his deeply engrained skills in data analysis. Taking a bright red marker, he drew a circle around the numbers and letters indicating the burst, and wrote one word next to it: “Wow!”

Ehman wasted no time in letting his fellow members of SETI know about his discovery. The implications of the burst were not lost on any of them. The SETI volunteers knew there and then that the burst could not be explained by any current science. On each of their minds was the possibility that the purpose of their project had at long last been fulfilled: evidence of intelligent life beyond the Solar System.

 It doesn’t sound much like ‘We come in peace’, or ‘As you no doubt will be aware, the plans for the development of the outlying regions of the western spiral arm of the galaxy require the building of a hyperspace express route through your star system and, regrettably, your planet is one of those scheduled for demolition’, but the Wow! Signal could be the closest thing we have to a message from aliens

Hey, I know that frequency!

To understand why Ehman and his colleagues were so excited by the burst, we need to look at the characteristics of the particular frequency their telescope was picking up. The Big Ear radio telescope had been programmed to detect signals with the very specific frequency of 1420.406 Megahertz. That number might not roll off the tongue, but it’s incredibly important in astrophysics, and even has its own name: the Hydrogen Line frequency.

The red colours shows where hydrogen gas has been detected within the Milky Way. As it turns out, there’s a lot of it | Image: NASA

Hydrogen gas is extremely common in the wide expanses of space which lie between the stars. Atoms of the gas, consisting of an electron orbiting a single proton, are normally very stable and pretty uninteresting. But occasionally, the electron will flip over spontaneously due to quantum processes – a phenomenon known as spin flip transition, making the system unstable. To return to normal, the electron needs to flip back around, releasing a flash of light with a specific energy – a radio photon – in the process.

This process is incredibly rare for individual hydrogen atoms, but when hydrogen gas is gathered in clouds which span many light years, enough radio photons are given off by spontaneously flipping electrons that they can be easily picked up by radio telescopes on Earth. These photons make up the radio signal of the Hydrogen Line, which is important both to radio astronomers and to those hopeful that other technologically advanced civilisations could be out there somewhere.

The Hydrogen Line frequency is useful to astrophysicists, as they can use it to detect the exact locations of clouds hydrogen gas within our galaxy, and in those beyond. The clouds will always be densest in galactic arms, allowing radio astronomers to map out the distinctive structures of galaxies. They can also use the Doppler Effect to measure how fast hydrogen gas at various distances from the centre of galaxies is moving. From this, they can then create rotation curves for different galaxies, which currently give the clearest evidence we have for the existence of Dark Matter (but that’s a whole other story!)

So when astronomers point their radio telescopes at hydrogen gas clouds, it’s hardly surprising for them to observe radio waves at the Hydrogen Line frequency. But what if we observe them in places in the sky where we aren’t expecting them, or at higher-than-expected intensities? Any astronomer will agree that if this happens, something unexplained is going on.

“Huh, these aliens know about hydrogen spin-flip transition and have an in-depth understanding of their place in the galaxy… so why haven’t they invented clothes yet?” | Image: NASA

Astronomers at SETI became interested in the Hydrogen Line frequency because it is such a fundamental figure in astronomy. Clouds of hydrogen gas are so abundant in the galaxy that their signal can be picked up no matter where you go in space. SETI figured that if there are any other enlightened civilisations elsewhere in the universe, then they must realise this too. No matter how different their scientific units are to ours, if we asked them to create a radio signal at the Hydrogen Line frequency, it would be exactly the same as the signal we would create. So what better way to announce your presence to the galaxy than to send out a distinct, high-intensity transmission of the frequency?

 

SETI has already sent signals like this out into space, in the hope that others out there may be listening. In fact, they have a strict control over the transmission of the Hydrogen Line signal; it is now illegal to get anyone’s hopes up by transmitting the frequency yourself. But that isn’t the only method we have used to broadcast our knowledge of the Hydrogen Line. In 1972, under the efforts of Carl Sagan, Frank Drake and other journalists and astrophysicists, the famous Pioneer plaque was attached to probes Pioneer 10 and Pioneer 11.

In the top-left of the plaque is etched a diagram representing the distinctive electron flipping process which causes the Hydrogen Line. Between two representations of hydrogen atoms with electrons in the two different states is a horizontal line 21.106 cm long – the exact wavelength of a radio wave at the Hydrogen Line frequency of 1420.406 MHz. If an intelligent civilization ever finds one of the probes then it’s a safe bet that they will understand exactly what the diagram is representing, no matter their language.

 An explanation, or an alien-killing pretender?

Not long after Ehman’s bizarre discovery in 1977, the newly dubbed Wow! Signal, named after Ehman’s hasty scrawl in red pen, had taken the worlds of both science and the media by storm. While astrophysicists rushed to discover the astronomical source of the signal, journalists began to enthusiastically speculate that without any existing scientific explanation, it could have been more purposefully created in origin. For hopefuls of the existence of extra-terrestrial intelligence, the evidence was now more tantalising than ever.

Sorry it was me all along… or was it? | Image: NASA, ESA, J.-Y. Li

Yet for all the attention the Wow! Signal gained, the search for its origin proved fruitless for scientists and alien hunters alike. For over 40 years, the result sat there unexplained; frustrating some, and instilling hope in others. But in April 2017, astronomer Antonio Paris from St Petersburg College, Florida claimed in a paper to have solved the mystery once and for all.

Paris argued that on August 15, 1977, two comets inside the Solar System – 266P/Christensen and 355P/Gibbs – passed directly in front of the Big Ear radio telescope. Surrounding one of the comets was a cloud of hydrogen gas, which was given off by one of the masses of ice and rock. Naturally, the telescope picked up the Hydrogen Line signal of the cloud, but only as it passed through Big Ear’s field of view. For the first time, it looked like the mystery had been solved. But not everyone was satisfied with the new explanation.

Within weeks, Paris was receiving backlash from scientists, who had some strong criticisms of his paper. In June, Robert S. Dixon, director of the SETI project himself, published a rebuttal to Paris’ paper, claiming that the two comets weren’t in fact within Big Ear’s field of view on the day of the Wow! Signal. Other criticisms included claims that the comets were a long way from the Sun and therefore inactive, meaning neither of the comets could possibly maintain a hydrogen cloud around themselves. Some scientists even had many harsh words to say about Paris’ scientific methods in general. Paris stands by his theory, but he’s open to debate.

So for now, many astronomers still regard the Wow! Signal as a mystery, and hope remains that the true explanation of the burst could be another advanced civilization broadcasting its existence. But this isn’t the only case where strange signals in astronomy have gone unanswered for long periods, or where far-fetched and alluring explanation theories have been thought up.

Over the last century, the world of astronomy has been become famous for detecting mysterious signals, making bizarre discoveries, and throwing up seemingly unanswerable questions. Some of these questions have had mundane explanations. Others have led to new research which has come to revolutionize our understanding of the universe. And, like the Wow! Signal, still others remind us just how much we have yet to learn.

In this series, we will find out more about the signals which have both answered and created some of the most enticing questions in modern astronomy. Next time, we will turn back the clock to before 1977, when astrophysics was reeling at the revelation that our place in the universe was far less significant than we realized.

0 comments on “K is for Kepler”

K is for Kepler

“Truth is the daughter of time, and I feel no shame in being her midwife.” Johannes Kepler

These words, written by Johannes Kepler in 1611, are profound.  At the time, Galileo had just discovered the Galilean moons (including Europa) in Florence but was being persecuted for his belief that the Earth orbits the sun.  Kepler, a staunch supporter of heliocentrism, was working as the Imperial Mathematician in Prague.  When word that Galileo had used a telescope to find the moons reached Kepler, he was so fascinated and impressed that he wrote an enthusiastic letter of support and scrawled that pithy aphorism.

While Kepler enjoyed some social status as Imperial Mathematician and was much more free to contradict Aristotle than his Italian counterparts, his life was by no means a charmed one.  The son of “an immoral, rough and quarrelsome soldier” (his own words), Kepler managed to carve himself a place in history based on his skill as a mathematician and astronomer.  He kept on working through many family disasters, including the deaths of his wife and his seven year old son and a witch trial about his mother.

Kepler was a devout Christian and grew up Lutheran but was excommunicated due to his rejection of the Augsburg Confession.  This left him neither a Lutheran nor a Catholic and between sides when the Thirty Years War broke out in 1618.

You've got to love that frilly collar.  Just like Shakespeare!  Actually, come to think of it, Kepler actually lived at the exact same time as Shakespeare.  I wonder if they ever met and what they might say to each other at a dinner party.  Image is public domain.
You’ve got to love that frilly collar. Just like Shakespeare! Actually, come to think of it, Kepler lived at the same time as Shakespeare. I wonder if they ever met and what they might say to each other at a dinner party. Image is public domain.

Despite all of this, Kepler revolutionized astronomy by formulating mathematical laws that accurately describe the motions of the planets.  These are still taught in astronomy today and are called Kepler’s Laws.

The first law is that planets orbit in ellipses with the sun at one focus.  Before Kepler, most Western astronomers modelled the orbits of planets as circles and had to invoke a strange concepts like epicycles and equant points.

1. Planets orbit in ellipses, not circles.
1. Planets orbit in ellipses, not circles.  Image my own

The second law is that a line between a planet and a star will sweep out equal area in equal time. In other words, planets move faster when they are closer to their star and slower when they are further away.  This law is better understood with a diagram:

asd
2. Planets don’t have constant speed  Image by RJHall

The third law, formulated after the first two, is that the time it takes a planet to make an orbit (orbital period) is directly proportional to its distance from the star.  This law allows astronomers to calculate how far a planet is from its star based only on information about the length of its year and the mass of the star.  Remember this one, because it will become important later.

As you can see, Kepler’s Laws are fundamental to our understanding of how planets move, or orbital dynamics.  It will come as no surprise then that every young astronomer is all too familiar with Kepler’s laws.  This isn’t the only reason he’s familiar though.  He is also shares a name with the most successful exoplanet hunter the world has ever produced.  The Kepler Space Telescope.

Kepler: Planet Hunter is kind of Like Abraham Lincoln: Vampire Hunter.  Except more real.  And frankly, a little more impressive.    Image by Wendy Stenzel at NASA
Kepler: Planet Hunter is kind of like Abraham Lincoln: Vampire Hunter. Except more real. And frankly, a little more impressive. Image by Wendy Stenzel at NASA

Launched in 2009, the Kepler Space Telescope used 42 image sensors to continuously observe over 145,000 stars.  Unlike a lot of other telescopes that try to take magnified images, Kepler wasn’t interested in images.  It wanted accurate data on brightness.  It basically had a staring contest with these 145,000+ stars, waiting for them to blink.  I say blink because Kepler was waiting for the brightness to go down and back up.  The brightness of stars can vary for all sorts of reasons, but planets passing in front of their stars make the brightness dip in a particular way.  This dip is called a transit and finding transits was Kepler’s mission.

When a transit occurs, the size of the brightness dip corresponds to the size of the planet and the length of the dip corresponds to the time it takes a planet to orbit (as well as the size of the star).  Remembering Kepler’s third law,  if we know the time it takes to orbit, we can figure out the distance to the star.  And if we know the brightness of a star and the distance, we can figure out how much energy the planet receives.  Plug all that in to a simple(ish) equation, and out pops temperature.

Stars, just like planets and people, come in all different shapes and sizes.  That means light curves also vary widely.   Image from Planethunters.org
Stars, just like planets and people, come in all different shapes and sizes. That means light curves also vary widely. Image from Planethunters.org, a great citizen science project that combines people’s natural pattern-finding ability with Kepler data to find planets.

So thanks to the Keplers (both Johannes and the Space Telescope) we can start to look for alien worlds that have temperatures similar to the ones we find here.  The hope is that one day we will find evidence of life on another planet.  And then we can begin our transition into any one of several sci-fi galactic civilizations (my personal favourite is Foundation, but some people prefer Star Wars, Star Trek, or Eve Online).

Unfortunately, in May 2013 one of the components that kept Kepler (the telescope) stable failed, meaning the mission was apparently over.  The mission had been hugely successful, discovering over 1000 confirmed planets, with 4000 other planet candidates waiting to be confirmed.  It turns out that most stars probably have planets and that a lot of planets in the galaxy might be the right temperature to be habitable.

Astronomers are nothing if not persistent though, so an ingenious method was devised to make sure Kepler can continue observing even without its stabilizer.  This new mission, dubbed K2, uses the radiation pressure from the sun itself to balance the telescope.  Instead of continuously observing the same 145 000 stars, K2s targets will change periodically as it orbits the sun.  There will be far less data coming down, but as of this writing four new planets have already been found since K2 began in earnest in June 2014.

There's a lot of information there, but I think the most impressive bit is that K2 is metaphorically balancing a pencil on a fingertip, remotely, from 150 million km away.  Image by NASA
There’s a lot of information there, but I think the most impressive bit is that K2 is metaphorically balancing a pencil on a fingertip, remotely, from 150 million km away. Image by NASA

Currently, while there are all sorts of really interesting exoplanets out there (from hot jupiters like 51 peg b to mirror earths like Kepler-438b), we have yet to find signs of life.  But I think that before too long, we will.  Just as the truth of heliocentrism eventually came out thanks to Kepler, a telescope with his name will be instrumental in uncovering the truth of life elsewhere in the universe.  Just like he said,

“Truth is the daughter of time, and I feel no shame in being her midwife” Johannes Kepler

0 comments on “J is for Jupiter’s Great Red Spot”

J is for Jupiter’s Great Red Spot

By Jonathan Farrow from the Thoughtful Pharaoh

If you look up in the night’s sky and point even a simple pair of binoculars at Jupiter, like Galileo did with a rudimentary telescope 405 years ago, you will see what he did: a reddish-pink planet with swirling masses of clouds. These clouds are beautiful in their own right, but there is one particular feature that has drawn the eyes and the fascination of people for over four centuries. The Great Red Spot.

This swirling, gurgling red super-storm could fit three earths inside of it and has been raging on the gas giant ever since we’ve been keeping records. How it has lasted for so long and why it has such a different colour has long been a mystery.

In 2000, on the way to Saturn, an ESA mission called Cassini aimed to give us some clues when it flew within 9.7 million kilometres of Jupiter and looked more closely at the spot than we had ever done before or since. 9.7 million kilometres sounds like a lot, but consider that is only about 1% of the distance between Jupiter and Saturn. (As a side note, did you know that Jupiter and Saturn are further away from each other than Jupiter and Earth? I didn’t!).

It might have looked kind of like this, but with Jupiter instead of Saturn in the background.  Cassini's main mission was to Saturn and its moons.
It might have looked kind of like this, but with Jupiter instead of Saturn in the background. Cassini’s main mission was to study Saturn and its moons.  Image by NASA

With its flyby, Cassini found out that the clouds that form the spot are up to eight kilometres higher than the surrounding clouds and started to understand the chemical composition of the clouds.

14 years later, in November 2014, NASA scientists released results that combine data from the Cassini flyby with lab experiments on Earth. They showed that the colour must come from the interaction of ultraviolet (UV) light from the sun and the ammonia and acetylene in the top layers of the storm. Once the red particles are produced, they are trapped by the circular winds of the storm. This overturns the previous theory that it was the bottom clouds which provided the colour. The NASA scientists compare the colour of the storm to a sunburn rather than a blush.

So, thanks to NASA and the Cassini mission, we have a better idea about how the spot gets its colour, but last spring the astronomy world was in a tizzy because news came that the spot has been shrinking.

That's some pretty serious shrinkage!
That’s some pretty serious shrinkage!  Image by NASA

Since it is so noticeable, the storm has been recorded as far back as the 1800s, when it was believed to be about 41000 km across (roughly equal to the circumference of Earth).  The most recent image, from 2014, puts the size at only 16500 km (less than the length of the great wall of China).  Not only is it much smaller than it used to be, but the rate of shrinkage is increasing.

Totally, 100% peer-reviewed, recollection of secondary school math to figure out when the spot will disappear.
Totally 100% peer-reviewed recollection of secondary school math to figure out when the spot will disappear.  Image my own

If my calculations are correct, and if the storm keeps shrinking the way it has been, it will disappear entirely in about 35 years, in 2059.  That means we may be among the last people to ever see the spot that Galileo spied on that fateful night in 1610.

Instead of relying on me and my calculations, however, NASA sent a spacecraft to go investigate.  Juno left in 2011 and by now is more than halfway to its destination. When it arrives in July 2016, Juno will study the gas giant in a variety of ways and hopefully get the bottom of this whole shrinking storm mystery.

JUNO
Image by NASA